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Abstract

Three-dimensional free convection in a vertical channel with spatially periodic, flush-mounted heat sources is in-

vestigated by a spectral element method. All numerical solutions are obtained using a time-accurate finite-difference

integration scheme capable of capturing temporal instabilities that spontaneously appear at large values of Grashof

number, Gr. In addition, the leading order approximation of the 3-D solution for small Gr is derived and compared

with the numerical solutions. The agreement is excellent for sufficiently small Gr.

Computations are carried out for a Boussinesq fluid, Prandtl number, Pr ¼ 0:71, non-dimensional reference tem-
perature, H�

b ¼ 0:12 and values of Grashof number in the range 0:16Gr6 5� 104. For given aspect ratios, and for
sufficiently small values of Grashof number, the solution evolves to a unique, time-independent state that exhibits the

maximum symmetry consistent with the boundary conditions. At Gr� ’ 28,000, self-sustained oscillations appear
spontaneously in the flow and thermal fields. For time-dependent solutions (GrPGr�) the symmetry of the flow and
temperature fields breaks down.

Temperature and velocity distributions as well as maximum temperature, maximum velocity and local Nusselt

number distributions are presented for the values of Grashof number studied. For time-dependent flows, instantaneous

as well as averaged-in-time solutions are discussed.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural convection is an effective mode of heat

transfer for both air and liquid cooling when surface

heat fluxes are relatively small. Because of its simplicity

and reliability, it has important advantages over other

cooling modes. In addition, if thermal control using the

natural convection cooling is adopted, it eliminates the

fan or pump and provides a noise- and vibration-free

environment [1]. Consequently, communications switch-

ing devices, avionics packages, electronic test equipment,

consumer electronics, and low-end computer packages

are often air-cooled by natural convection [2,3]. Mod-

eling of typical configurations encountered in second

level electronics packaging, lead to the consideration

of free convection cooling in tall enclosures or vertical

channels.

The vast majority of studies on natural convection in

cavities and channels deals with 2-D geometries, mostly

cavities formed by two parallel vertical surfaces held at

different uniform temperatures or uniform heat fluxes

and, in the case of cavities, with adiabatic or constant-

temperature top and bottom walls. Although these

studies treat an important class of problems with sig-

nificant practical applications, complexities present in

many real problems are neglected by ignoring the third

dimension [4].

Liakopoulos et al. [5] and Huang and Liakopoulos

[6] investigated numerically 2-D thermally driven con-

vective flows in tall cavities and vertical channels for Pr ¼
0:71 and a wide range of values of Grashof number,
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Gr. The study presented in this paper is the 3-D gener-

alization of the 2-D configuration considered in the

previous papers. Keyhani et al. [7] performed experi-

ments on natural convection in a ethylene glycol-filled

(Pr ¼ 150) vertical cavity with discrete heat sources. A
cavity of aspect ratio Ay ¼ 16:5 was formed with 11 al-
ternately unheated and flush-heated sections of equal

height on one of the vertical wall and the other vertical

wall was kept isothermal. The horizontal walls were

adiabatic. They found that discrete flush-mounted

heaters resulted in local Nusselt numbers similar to

those reported by Park and Bergles [8], who investigated

the effect of heater width on natural convection, for a

single wide flush-mounted heater on a vertical plate.

Joshi and Knight [9] studied natural convection from a

column of heat sources flush mounted on one wall of a

vertical channel immersed in water. They investigated

the effect of heater and channel spacing on heat transfer.

While there are many two-dimensional simulations in

the literature few three-dimensional numerical studies

have been performed. Kuhn and Oosthuizen [10] re-

ported an analysis of 3-D, transient, natural convection

flow in a rectangular enclosure with localized heating.

They found that three-dimensional flow increased the

local heat transfer coefficient at the edges of the element

resulting in a higher average Nusselt number than the

corresponding 2-D flow. However, the difference de-

creased as the Rayleigh number was increased, being

nearly the same at Ra ¼ 105. Their results for two span-
wise, in-line, flush-mounted, symmetrically placed heat-

ers indicate that the distance between the elements has

little effect on the mean heat transfer rate variation but

has a considerable effect on the local Nu number dis-

tribution. Recently, three-dimensional, steady, natural

convection from a discrete flush-mounted rectangular

heat source on the bottom of a horizontal enclosure is

studied numerically [11]. Lee [12] performed combined

numerical and theoretical analyses to investigate the

natural convection heat and mass transfer in vertical

ducts. The literature on free convection in cavities and

channels with protruding heat sources has been reviewed

by Gunes and Liakopoulos [13].

In the present study, three-dimensional buoyancy-

driven flow and heat transfer generated by periodically

spaced heat sources of uniform heat flux, flush mounted

on the left vertical wall of a vertical channel are exam-

Nomenclature

Acy , Acz heat source aspect ratios, lcy=l, lcz=l
Asy , Asz heat source spacing aspect ratios, lsy=l, lsz=l
Ay height aspect ratio of the computational

domain, h=l
Az depth aspect ratio of the computational

domain, b=l
b computational domain depth

cp specific heat

g gravitational acceleration

Gr Grashof number, bgq00l4=m2k
h computational domain height

k thermal conductivity of the fluid

K number of macro-elements

l channel width

lcy , lcz dimensions of heat source

lsy , lsz distances between heat sources

N order of interpolantsþ 1
Nu local Nusselt number

Nu average Nusselt number

p pressure

P non-dimensional pressure, ðl2=q0a2Þp
Pr Prandtl number, m=a
q00 dissipated heat flux

Q dimensionless volume flow rate

Ra Rayleigh number, bgq00l4=mak
t� dimensionless time

t time

T dimensional temperature

u; v;w dimensional velocity components

U ; V ;W non-dimensional velocity components
~VV velocity vector

x; y; z Cartesian coordinates

X ; Y ; Z non-dimensional Cartesian coordinates

Greek symbols

a thermal diffusivity

b thermal expansion coefficient

oXA adiabatic surface

oXC constant heat flux surface

oXT constant temperature surface

Dt time integration step

H non-dimensional temperature, ðk=q00lÞ�
ðT 	 TbÞ

l dynamic viscosity

m kinematic viscosity

q density

Subscripts

an analytical value

b reference value

C chip carrier

l left wall

max maximum value in the computational do-

main

num numerical value

r right wall
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ined. The right vertical wall is kept isothermal. The ge-

ometry is shown in Fig. 1. Chip carriers are modeled as

flush-mounted heat sources with constant heat flux. A

detailed description of the computational domain and

the associated thermal boundary conditions are given in

Fig. 2. Periodic boundary conditions are imposed on

both velocity and temperature fields, i.e., velocity and

temperature in the computational domain inlet (y ¼
	h=2 plane) are the same as in the computational do-
main exit (y ¼ h=2 plane) as well as at the vertical planes

of z ¼ 	b=2 and z ¼ b=2. All simulations performed are
time accurate. If a steady (time-independent) solution

exists it is found as the steady-state solution of an ap-

propriate initial boundary value problem, after all

transients die out, i.e., in the limit t ! 1.

2. Mathematical model

In this study, 3-D, laminar, possibly time-dependent

natural convection flow of a Boussinesq fluid is consid-

ered. Neglecting viscous dissipation and energy genera-

tion in the fluid domain, the governing partial

differential equations, conservation of mass, momentum

and energy, can be written in dimensionless form as

follows:

oU
oX

þ oV
oY

þ oW
oZ

¼ 0; ð1Þ

oU
ot�

þ U
oU
oX

þ V
oU
oY

þ W
oU
oZ

¼ 	 oP
oX

þ Pr
o2U
oX 2

�
þ o2U

oY 2
þ o2U

oZ2

�
; ð2Þ

oV
ot�

þ U
oV
oX

þ V
oV
oY

þ W
oV
oZ

¼ 	 oP
oY

þ PrRaH þ Pr
o2V
oX 2

�
þ o2V

oY 2
þ o2V

oZ2

�
; ð3Þ

oW
ot�

þ U
oW
oX

þ V
oW
oY

þ W
oW
oZ

¼ 	 oP
oZ

þ Pr
o2W
oX 2

�
þ o2W

oY 2
þ o2W

oZ2

�
; ð4Þ

Fig. 1. Problem configuration.

Fig. 2. Projection of the computational domain to the plane

x ¼ 0. Thermal boundary conditions.
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oH
ot�

þ U
oH
oX

þ V
oH
oY

þ W
oH
oZ

¼ o2H
oX 2

�
þ o2H

oY 2
þ o2H

oZ2

�
: ð5Þ

The independent and dependent variables have been

non-dimensionalized using

ðX ; Y ; ZÞ ¼ 1
l
ðx; y; zÞ; t� ¼ a

l2
t; ð6Þ

ðU ; V ;W Þ ¼ l
a
ðu; v;wÞ; P ¼ l2

q0a2
p; H ¼ k

q00l
ðT 	 TbÞ:

ð7Þ

In general, lower case letters denote dimensional vari-

ables. However, note that the dimensional temperature

is denoted by T and the dimensionless time is denoted by
t�. In the above, ðx; y; zÞ and ðu; v;wÞ denote the Carte-
sian coordinates and velocity components, respectively,

p is the pressure relative to the background hydrostatic
distribution, l is the width of the vertical channel (see
Fig. 1), k is the thermal conductivity of the fluid, a is the
thermal diffusivity, m is the kinematic viscosity, b is the
thermal expansion coefficient, g is the gravitational ac-
celeration, q0 is the reference density, Tb is the reference
temperature, q00 denotes the uniform input heat flux of

the heat sources, Pr ¼ m=a denotes the Prandtl number
and Ra ¼ bgq00l4=mak denotes the Rayleigh number.
To describe the computational domain we introduce

aspect ratios Az ¼ b=l and Ay ¼ h=l where l denotes the
width of the vertical channel. The heat source aspect

ratios are defined as Acz ¼ lcz=l and Acy ¼ lcy=l and the
chip spacing aspect ratios are Asy ¼ lsy=l and Asz ¼ lsz=l,
as shown in Fig. 2.

The associated boundary conditions for the config-

uration considered in this paper are:

~VV ðX ; Y ; Z; t�Þ ¼ 0 at all solid walls; ð8Þ

~VV ðX ;	Ay=2; Z; t�Þ ¼ ~VV ðX ;Ay=2; Z; t�Þ; ð9aÞ

~VV ðX ; Y ;	Az=2; t�Þ ¼ ~VV ðX ; Y ;Az=2; t�Þ; ð9bÞ

oH
oX

¼ 	1; on oXC;
0; on oXA;

�
ð10Þ

H ¼ k
q00l

ðTC 	 TbÞ ¼ 	H�
b on oXT; ð11Þ

HðX ;	Ay=2; Z; t�Þ ¼ HðX ;Ay=2; Z; t�Þ; ð12aÞ

HðX ; Y ;	Az=2; t�Þ ¼ HðX ; Y ;Az=2; t�Þ: ð12bÞ

3. Method of solution

The governing equations (1)–(5) with the appropriate

boundary conditions are solved by a spectral element

method [14]. Spectral element methods are high-order

weighted-residual techniques. Their success is mainly

due to their ability to represent relatively complex ge-

ometries while preserving the good resolution properties

of the spectral methods [15]. In standard finite element

methods (h-type), convergence is reached by increas-
ing the number of elements, K, in the computational
domain leading to an algebraic rate of error decrease.

On the other hand, in p-type finite element methods
convergence is reached by increasing the order of poly-

nomials used as basis functions, leading to faster error

decay for smooth solutions. Becker et al. [16] notes that

the p-type finite element method achieves better con-
vergence rates (energy norm versus number of degrees of

freedom) than the h-method for smooth solutions. In the
presence of singularities, optimal convergence rates are

achieved by a combination of the h- and p-methods. In
h–p methods, one obtains higher efficiencies by varying
both macro-elements (grid size h) and the polynomial
degree ðpÞ.
In the spectral element used in our simulations, the

computational domain is subdivided into K non-over-

lapping macro-elements. Within each element, a local

mesh is constructed for the velocity and temperature

fields corresponding to N � N � N Gauss–Lobatto–

Legendre collocation points. Within each element the

velocity and temperature fields are expanded in terms

of ðN 	 1Þth order tensor-product Lagrangian interpo-
lants through the Gauss–Lobatto–Legendre collocation

points, while the pressure field is approximated in terms

of the ðN 	 2Þth order Lagrangian interpolants through

Table 1

Comparison of numerical and analytical solutions (Pr ¼ 0:71, Acy ¼ Acz ¼ 2, Ay ¼ Az ¼ 4, H�
b ¼ 0:125)

Gr ½Hmax
num ½Hmax
an Rel. Er. (%) ½Vmax
num ½Vmax
an Rel. Er. (%)

0.1 0.6037 0.6036 0.02 9:1� 10	4 9:1� 10	4 0.0

1 0.6037 0.6036 0.02 9:1� 10	3 9:1� 10	3 0.0

100 0.6015 0.6036 0.35 0.9058 0.9100 0.46

200 0.5991 0.6036 0.75 1.8006 1.8200 1.1

500 0.5769 0.6036 4.4 4.3629 4.5500 4.1
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the Gauss–Legendre collocation points. Spatial conver-

gence is obtained by increasing N or K, or both.

Integration in time is performed using conventional

finite difference techniques. The non-linear convection

terms in Eqs. (2)–(5) and body-force term in Eq. (3) are

integrated explicitly in time using a third-order Adams–

Bashforth scheme, whereas the diffusion terms, the

pressure gradient and the continuity equation (1) are

treated implicitly using a sth-order backward-differenti-
ation formula. Numerical results presented in this paper

have been obtained with s ¼ 1 or 2. The explicit treat-
ment of the non-linear terms results in a limitation on

the maximum allowable time step, Dt, i.e., a Courant
condition should be satisfied in order to ensure numer-

ical stability.

Table 2

Comparison of numerical and analytical solutions (Pr ¼ 0:71, Acy ¼ Acz ¼ 2, Ay ¼ Az ¼ 4, H�
b ¼ 0:125)

Gr ½Umax
num ½Umax
an Rel. Er. (%) ½Wmax
num ½Wmax
an Rel. Er. (%)

0.1 8:8� 10	5 8:8� 10	5 0.0 1:8� 10	4 1:8� 10	4 0.0

1 8:9� 10	4 8:8� 10	4 1.1 1:8� 10	3 1:8� 10	3 0.0

100 0.08923 0.08823 1.1 0.18209 0.18185 0.13

200 0.17964 0.17646 1.8 0.35617 0.36370 2.1

500 0.39543 0.44115 11.6 0.78210 0.90925 16.3

Table 3

Comparison of numerical and analytical solutions (Pr ¼ 0:71,
Acy ¼ Acz ¼ 2, Ay ¼ Az ¼ 4, H�

b ¼ 0:125)
Gr ½Pmax
num ½Pmax
an Rel. Er. (%)

0.1 0.00379 0.00375 1.0

1 0.03790 0.03751 1.0

100 3.7735 3.7514 0.6

200 7.3553 7.5028 2.0

500 15.8537 18.757 18.3

Fig. 3. Vertical velocity component contours at Y ¼ 0. (a) Gr ¼ 1000, (b) Gr ¼ 30,000, (c) Gr ¼ 50,000.
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Implementation of the numerical methods described

above is based on Nekton [17], a computer code,

developed by Patera and his co-workers, for the simu-

lation of steady and unsteady incompressible fluid flow,

heat and mass transfer. At high values of Grashof

number computations are performed using a standard

time-split formulation [18]. At low Grashof numbers

(Gr6 100), solutions are computed using Uzawa�s al-
gorithm. This eliminates the splitting errors that can

arise at speeds characteristic of small Grashof number

flows. In our numerical simulations we have typically

used K ¼ 128 elements and N ¼ 5, which provides ex-
cellent accuracy for small and moderate values of Gr.

For high values of Grashof number, solutions with

Fig. 4. Velocity vectors at various Z-planes. (a) Gr ¼ 1000, (b) Gr ¼ 50,000.
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N ¼ 7 have also been obtained. The difference between
solutions with N ¼ 5 and solutions with N ¼ 7 is <2%.

Computations were performed on a Stardent P3000

superworkstation and an IBM RS/6000 model 950.

Fig. 5. Instantaneous velocity vectors and isotherms at Z ¼ 	1, Gr ¼ 50,000. (a) 3T=10, (b) 8T=10, (c) 9T=10, (d) T .

H. Gunes, A. Liakopoulos / International Journal of Heat and Mass Transfer 46 (2003) 791–808 797



4. Results

Examination of the governing equations (1)–(5) and

boundary conditions, Eqs. (8)–(12b), reveals that for

fixed geometry the convective flow is governed by the

Prandtl number, Pr, Rayleigh number, Ra (or equiva-

lently, Grashof number, Gr ¼ Ra=Pr), and the dimen-
sionless channel reference temperature, H�

b ¼ kTb=ðq00lÞ.
Additional independent dimensionless parameters de-

scribe the domain geometry of the problem. In this pa-

per, Pr is set to 0.71 (for air), the dimensionless channel

reference temperature is maintained at H�
b ¼ 0:12, Gr

ranges from 0.1 to 5� 104. For all numerical simula-
tions the aspect ratios are Ay ¼ 4, Az ¼ 4, Acy ¼ 2, Acz ¼
2, Asy ¼ 2, and Asz ¼ 2.

4.1. Analytical solution

To assess the accuracy of the numerical procedure, a

3-D analytical solution, valid in the limit of small values

of Grashof number, has been derived. Considering reg-

ular small parameter expansions of the form,

~VV ¼ Gr~VV1ðX ; Y ; ZÞ þ Gr2~VV2ðX ; Y ; ZÞ þ � � � ð13Þ

Fig. 6. (a) Time record of vertical velocity component at (0.79, 1.09, )0.5), Gr ¼ 50,000. (b) Frequency content of the vertical velocity
component at (0.79, 1.09, )0.5), Gr ¼ 50; 000. (c) Frequency content of the vertical velocity component at (0.207, )0.25, )1.0),
Gr ¼ 50,000.
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H ¼ H0ðX ; Y ; ZÞ þ GrH1ðX ; Y ; ZÞ þ � � � ð14Þ

P ¼ GrP1ðX ; Y ; ZÞ þ Gr2 P2ðX ; Y ; ZÞ þ � � � ð15Þ

for the steady velocity, temperature and pressure fields

respectively and substituting Eqs. (13)–(15) into Eqs.

(1)–(5) we obtain,

oU1
oX

þ oV1
oY

þ oW1
oZ

¼ 0; ð16Þ

r2U1 ¼
1

Pr
oP1
oX

; ð17Þ

r2V1 ¼
1

Pr
oP1
oY

	 PrH0; ð18Þ

r2W1 ¼
1

Pr
oP1
oZ

; ð19Þ

r2H0 ¼ 0: ð20Þ

Considering Eqs. (17)–(19) and making use of Eq. (16),

the governing equation for P1 can be written as,

r2P1 ¼ Pr2
oH0

oY
: ð21Þ

By applying the Laplacian operator,r2, on both sides of

Eq. (17) and making use of Eq. (21) one obtains

r4U1 ¼ Pr
o2H0

oY oX
: ð22Þ

Eqs. (13)–(15) imply that the boundary conditions given

by Eqs. (8)–(12b) are applicable to U1, V1, W1 and H0.

Note that to complete the formulation of the problem,

we need to impose an additional boundary condition on

U1 as it is governed by a biharmonic equation, Eq. (22).
Taking into account that ~VV1 satisfies the no-slip condi-
tions at the walls and using Eq. (16) we obtain

oU1
oX

¼ 0 on all solid walls: ð23Þ

Eqs. (16)–(20) with boundary conditions, Eqs. (8)–(12b)

and (23) describe a set of boundary value problems

which determine uniquely the functions H0, U1, V1, W1
and P1. The solution can be written in the form

H0 ¼
X1
j¼0

X1
k¼0

bjkðX Þ cos kjY cos ckZ; ð24Þ

V1 ¼
X1
j¼0

X1
k¼0

ajkðX Þ cos kjY cos ckZ; ð25Þ

U1 ¼
X1
j¼1

X1
k¼0

cjkðX Þ sin kjY cos ckZ; ð26Þ

W1 ¼
X1
j¼1

X1
k¼1

GjkðX Þ sin kjY sin ckZ; ð27Þ

P1 ¼
X1
j¼1

X1
k¼0

FjkðX Þ sin kjY cos ckZ; ð28Þ

where kj ¼ 2pj=Ay and ck ¼ 2pk=Az. The detailed pro-

cedure of obtaining the above solution can be found in

Gunes [19]. The expressions for ajkðX Þ, bjkðX Þ, cjkðX Þ,
FjkðX Þ and GjkðX Þ in terms of hyperbolic functions and
polynomials are given in Appendix A.

• Based on the above solution, the leading order ap-

proximation to the volume flow rate through the

channel is

Fig. 7. (a) Variation of dimensionless maximum velocity with

Gr. (b) Variation of dimensionless net volume flow rate with Gr.
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Q ¼ Az GrPr
24

AcyAcz

AyAz

�
	 2H�

b

�
: ð29Þ

• The Nusselt number at the left (hot) wall, based on

the wall temperature, can be expressed as

NulðY ; ZÞ ¼
1

H0ð0; Y ; ZÞ
; ð30Þ

while the average Nusselt number, NuC, for the chip
(heat source) can be calculated as,

NuC ¼ 1

AcyAcz

Z Acz=2

	Acz=2

Z Acy=2

	Acy=2
NulðY ; ZÞdY dZ: ð31Þ

• At the right vertical isothermal wall, the Nusselt

number

NuðY ; ZÞ ¼ 	 oH
oX

ð1; Y ; ZÞ ð32Þ

can be expressed as

Fig. 8. Isotherms at various Z-planes (H�
b ¼ 0:12 and Pr ¼ 0:71).
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NuðY ; ZÞ ¼ 	
X1
j¼0

X1
k¼0

gjk cos kjY cos ckZ; ð33Þ

where

g00 ¼ 	AcyAcz

AyAz
; gj0 ¼ kjkj; g0k ¼ mkck ;

gjk ¼ njkqjk ; ð34Þ

where kj, mk , njk and qjk are given in Appendix A.

4.2. Computer program validation

The analytical solution presented above is compared

with our numerical solutions for a range of Grashof

numbers. The comparison of the field variables is carried

out for Acy ¼ Acz ¼ 2, Ay ¼ Az ¼ 4, Pr ¼ 0:71 and di-
mensionless channel reference temperature H�

b ¼ 0:125.
For Gr ! 0, the numerical results are in excellent

agreement with the analytical solution. However, at

Fig. 9. Isotherms at various Y -planes.
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large values of Gr, discrepancies are very pronounced

due to the breakdown of the analytical solution. Table 1

gives the maximum values of temperature and vertical

velocity for various values of Grashof number. As seen

from Table 1, the relative error between the numerical

and analytical values is within 1% for Gr6 200. In ad-
dition, numerical and analytical values of the field

variables were compared at each grid point for selected

vertical Z-planes at Gr ¼ 1 and 100. At Gr ¼ 1, the
comparison revealed that the relative error is 0.1–0.5%,

being close to 1.0% at very few points. However, for

Gr ¼ 100 the accuracy depends strongly on the constant
Z-planes. At Z ¼ 	2 plane, the relative error in tem-
perature at each grid point is about 1–3%. However,

close to the middle plane, e.g. at Z ¼ 0:17, the local error
increases to as high as 10%. For the Y -component of
velocity, the local error is in the range of 1–4% at

Z ¼ 	2, increasing to about 1–7% close to the mid-

vertical plane. The reason for this behavior of the

relative error distribution will be apparent after the

discussion of the solution behavior obtained numerically

at moderate and high values of Grashof number.

Table 2 summarizes the comparison of numerical and

analytical solutions for the velocity components in X
and Z directions. In addition, pressure values are com-
pared in Table 3. The Nusselt number distributions

obtained analytically and numerically are in excellent

agreement for Gr6 102. Further analytical solutions and
the effects of heat source aspect ratios on flow and

thermal fields are presented in [19].

4.3. Numerical solutions

Numerical solutions are obtained by gradually in-

creasing the value of Grashof number. All simulations

performed are time accurate. If a steady (time-indepen-

dent) solution exists it is found as the steady-state so-

lution of Eqs. (1)–(5) after all transients die out, i.e. in

the limit t ! 1. Time-independent steady-state solu-
tions have been found for Gr < Gr� ’ 28,000. These
solutions are symmetric about the mid-vertical plane

(Z ¼ 0). At Gr ¼ 28; 000 and H�
b ¼ 0:12 the solutions

becomes spontaneously periodic in time. All solutions

obtained for Gr > Gr� and H�
b ¼ 0:12 are oscillatory in

time exhibiting temporal patterns of increasing com-

plexity as Gr increases. The onset of temporal instability

is accompanied by a breakdown of the symmetry of

the fields about Z ¼ 0 that is characteristic of all time-
independent solutions.

4.3.1. Flow characteristics

The flow field is fully 3-D at all values of Gr and is

characterized by strong net upward flow in the channel

segment in front of the heat sources (	16 Z6 1) and

downward flow in the channel segment in front of the

adiabatic wall (16Z6 2 and 	26 Z6 	 1). Fig. 3 de-
picts the contours of constant V (vertical velocity com-
ponent) at the mid horizontal plane (Y ¼ 0) for
Gr ¼ 103, 3� 104 and 5� 104. The pattern depicted in
Fig. 3 does not change significantly at other elevations,

Y ¼ const. However, the velocity field depends strongly
on the Z and X coordinates as can be seen in Fig. 4,

which shows the velocity vectors at various Z-planes. As
Gr increases, the location of the maximum velocity at

Z ¼ 	2 plane moves closer to the cold wall. On the other
hand, at Z ¼ 0 (mid-vertical plane) the maximum ve-

locity moves closer to the hot wall while very small ve-

locities are observed near the cold wall. In Figs. 3 and 4,

time-averaged values are depicted for Gr ¼ 3� 104 and
5� 104. Instantaneous vector fields and corresponding
isotherms are presented in Fig. 5. At Gr ¼ 5� 104, a
rather strong vortex, which is convected upward in the

Fig. 10. (a) Time record of temperature at ð0:79; 1:09;	0:5Þ,
Gr ¼ 50,000. (b) Frequency content of temperature at ð0:79;
1:09;	0:5Þ, Gr ¼ 50,000.
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channel, is observable at Z ¼ 	1 plane. Fig. 6a shows
the time record of the vertical velocity component at

X ¼ 0:79, Y ¼ 1:09, and Z ¼ 	0:5 for Gr ¼ 5� 104
while Fig. 6b shows the frequency content on this signal

obtained by fast Fourier transform (FFT). It should be

noted that this frequency spectrum is not representative

of all points in the channel. For example, at point

(X ¼ 0:207, Y ¼ 	0:25, Z ¼ 	1:00) time oscillations are
more vigorous and include several frequencies as illus-

trated in Fig. 6c. Fig. 7a shows the maximum dimen-

sionless velocity over the whole computational domain.

It increases linearly with Gr for sufficiently small values

of Gr ðGr6 103––conduction dominated regime). For
higher values of Gr the slope of Vmax changes as con-
vection effects become important. Finally, the time-

averaged Vmax exhibits a further change in slope at about

Gr ’ Gr� where the solution becomes time dependent.
Fig. 7b shows the dependence of induced net volume

flow rate on Gr.

4.3.2. Heat transfer characteristics

Heat transfer characteristics are fully three-dimen-

sional for all values of Gr. At Gr ¼ 102, the temperature
field is practically that of pure conduction. As Gr in-

creases, beginning with Gr ¼ 103 convective effects be-
come important (Fig. 8). At Gr ¼ 104, isotherms become
almost straight vertical lines at Z ¼ 	2 and at Z ¼ 0
boundary layers start forming in the vicinity of the heat

sources. Temperatures at Z ¼ 0 depend only on X in

most of the channel width as the boundary layers be-

come increasingly thin as Gr increases. Similar charac-

teristics are exhibited by velocities at Z ¼ 	2 and 0

Fig. 11. Temperature distribution on the left vertical wall (X ¼ 0).
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planes. Fig. 9 shows the isotherms at various Y -planes
for selected Gr. Again, the symmetry breakdown for

GrPGr� is observable in the temperature field as ve-
locity and temperature fields are coupled. A typical re-

cord of temperature oscillations and its frequency

decomposition are shown in Fig. 10a and b for a point

located at X ¼ 0:79, Y ¼ 1:09, Z ¼ 	0:5, and Gr ¼ 5�
104.

The variation of dimensionless temperature at the

heated wall (X ¼ 0) is shown in Fig. 11. In the con-
duction solution, the temperature distribution is sym-

metric about the Y and Z axes and the maximum and

minimum temperatures occur at Y ¼ 0 and �2, respec-
tively. At Gr ¼ 103, the locations of maximum and

minimum temperature are moved to Y ¼ 0:68 and

)1.44, and are shifted to Y ¼ 0:84 and )1.16, respec-
tively, at Gr ¼ 104. However, for higher values of Gr, the
locations of the extrema of the temperature field remain

fairly constant. On the other hand, as expected, the

difference Hmax 	 Hmin at the heated wall (X ¼ 0) de-
creases with increasing Gr (Fig. 11). Similar trend is

obtained for the maximum dimensionless temperature as

seen in Fig. 12. For small Gr ðGr6 103Þ, the maximum
dimensionless temperature decreases linearly with Gr,

giving rise to a 12% drop in its value at Gr ¼ 103. As
natural convection cooling becomes appreciable, a 35%

drop is observed at Gr ¼ 104. For Gr ¼ 5� 104 the av-
eraged-in-time maximum dimensionless temperature is

47% lower than the value corresponding to the con-

duction solution.

Fig. 13 shows the local Nusselt number along the

heat source (chip) surface defined as

NuCðY ; Z; t�Þ ¼
q00l

kðT 	 TbÞ
ð35Þ

or in terms of the dimensionless temperature

NuC ¼ 1

HðX ¼ 0; Y ; Z; t�Þ ; ð36Þ

for various values of Gr. The average chip Nusselt

number, defined in Eq. (31), is shown in Fig. 14. Note

that for both local and average chip Nusselt numbers,

averaged-in-time values are reported for Gr > Gr�. As
can be seen in Fig. 14, NuC is practically constant for
Gr6 100, i.e, the temperature field can essentially be
characterized by the conduction solution. Between

100 < Gr < 3� 103 a transition occurs and from this

point on a linear increase in NuC is observed up to
Gr ¼ Gr�, where the solution becomes oscillatory in
time.

The Nusselt number distribution at the right (cold)

wall, defined in Eq. (32), is shown in Fig. 15 for various

values of Gr. It should be noted that for the time-

dependent cases, the instantaneous Nusselt number dis-

tributions at the right wall can be very different from the

averaged-in-time distributions shown in Fig. 15. For

example, Fig. 16 shows two typical instantaneous dis-

tributions of NuðX ¼ 1; Y ; Z; t�Þ at Gr ¼ 3� 104 and
5� 104 that reflect the strong time-dependent character
of the temperature field which of course is directly

coupled to the velocity fluctuations.

5. Summary

We have presented a study of three-dimensional free

convection of a Boussinesq fluid with Pr ¼ 0:71 in a
vertical channel. The flow is driven by heat sources flush

mounted on the left vertical channel wall and periodi-

cally arranged in both horizontal and vertical directions.

A three-dimensional analytical solution, valid in the

limit of small values of Grashof number was also pre-

sented and compared with the solutions obtained nu-

merically. The agreement was excellent for sufficiently

small Gr. Emphasis was given on the self-sustained os-

cillations that spontaneously appear at sufficiently large

values of Grashof number. In the present work, the net

volume flowrate through the channel is small. Flow and

thermal fields as well as the values of critical Grashof

number are vastly different when the background tem-

perature is varied considerably.

We have shown that direct numerical simulation is

a promising approach for studying convective insta-

bilities in the presence of doubly periodic thermal

boundary conditions. However, the parameter space for

the problem considered is very large and an exhaustive

numerical investigation of the influence of all geometric

Fig. 12. Variation of maximum dimensionless temperature

with Gr.
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and thermal parameters depends on further advances in

computing capabilities.

Appendix A

In this appendix we summarize the expressions for

the expansion coefficients (functions of X ) appearing in
Eqs. (24)–(28).

(a) Dimensionless temperature:

b00ðX Þ ¼
AcyAcz

AyAz
ð1	 X Þ 	 H�

b; ðA:1Þ

bj0ðX Þ ¼ kj sinh kjðX 	 1Þ

where kj ¼
	4Acz sin

Acy
2

kj
� �

k2j AyAz cosh kj
; ðA:2Þ

b0kðX Þ ¼ mk sinh ckðX 	 1Þ

where mk ¼
	4Acy sin

Acz
2

ck
	 


c2kAyAz cosh ck
; ðA:3Þ

bjkðX Þ ¼ njk sinh qjkðX 	 1Þ

where njk ¼
	16 sin Acz

2
kj

	 

sin

Acy
2

ck
� �

kjckqjkAyAz cosh qjk
ðA:4Þ

and

qjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2j þ c2k

q
: ðA:5Þ

(b) Dimensionless x-velocity component:

cjkðX Þ ¼ E1ðsinh qjkX 	 qjkX cosh qjkX Þ

þ E3X sinh qjkX 	 Prnjkkj
8qjk

X 2

� cosh qjkðX 	 1Þ; ðA:6Þ

where

E1 ¼
Kjk

8q2jk

qjk cosh qjk 	 sinh qjk

q2jk 	 sinh
2 qjk

( )
; ðA:7aÞ

E3 ¼
Kjk

8q2jk

ðq2jk þ 2Þ sinh qjk 	 2qjk cosh qjk

q2jk 	 sinh
2 qjk

( )
;

ðA:7bÞ

Fig. 13. Local chip Nusselt number variation for various values

of Gr. (a) Z ¼ 	1, (b) Z ¼ 0.

Fig. 14. Variation of average chip Nusselt number with Gr.
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Kjk ¼ 	Prnjkqjkkj ðA:8aÞ

and njk and qjk are as defined in Eqs. (A.4) and (A.5),

respectively. cj0ðX Þ is given by Eq. (A.6) with ck ¼ 0
(k ¼ 0), or kj ¼ qjk and

Kj0 ¼ 	Pr kjk2j ; ðA:8bÞ

where kj is given in Eq. (A.2).

(c) Dimensionless pressure:

FjkðX Þ ¼ 2ðE3 sinh qjkX 	 E1qjk cosh qjkX Þ

þ Kjk

2qjk
X cosh qjkðX

(
	 1Þ

	 1

2qjk
sinh qjkðX 	 1Þ

)
; ðA:9Þ

Fig. 15. Nusselt number distribution at the right vertical wall (X ¼ 1).
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where E1, E3 and Kjk are given in Eqs. (A.7a)–

(A.8a), respectively.

Substituting ck ¼ 0, or kj ¼ qjk as discussed before,

Fj0ðX Þ can be written in the form of Eq. (A.9).
(d) Dimensionless z-velocity component:

GjkðX Þ ¼ sinhqjkX ðA1 þ ckE1X Þ 	
E3ck
qjk

X cosh qjkX

þ ckKjk

4q4jk
X cosh kjðX
�

	 1Þ

	 1
2
qjkX sinh kjðX 	 1Þ

�
; ðA:10Þ

where

A1 ¼ ck
E3
qjk
coth qjk

 
	 E1 	

Kjk

4q4jk sinhqjk

!
; ðA:11Þ

and E1, E2 and Kjk are given in Eqs. (A.7a)–(A.8a),

respectively.

(e) Dimensionless y-velocity component:

e00ðX Þ ¼ Pr X ðX 	 1Þ AcyAcz

6AyAz
ðX

�
	 2Þ þ 1

2
H�
b

�
;

ðA:12Þ

ej0ðX Þ ¼ sinh kjX ðA	 kjE10X Þ þ E30X cosh kjX

	 Pr kj
4

1

2
X 2 sinh kjðX

�
	 1Þ

þ X
kj
cosh kjðX 	 1Þ

�
; ðA:13Þ

where

A ¼ Pr kj
2kj

1

sinhkj

�
	 1
2

�
þ kjE1 	 E3 coth kj; ðA:14Þ

E10 ¼
Kj0

8k2j

kj cosh kj 	 sinh kj
k2j 	 sinh

2 kj

( )
; ðA:15aÞ

E30 ¼
Kj0

8k2j

ðk2j þ 2Þ sinh kj 	 2kj cosh kj

k2j 	 sinh
2 kj

( )
ðA:15bÞ

and kj and Kj0 are given in Eqs. (A.2) and (A.8b),

respectively.

e0kðX Þ ¼
Prmk

2ck

sinh ckX
sinh ck

�
	 X cosh ckðX 	 1Þ

�
; ðA:16Þ

where mk is given by Eq. (A.3).

ejkðX Þ ¼ sinh qjkX ðH1 	 kjE1X Þ þ
kj
qjk

E3X cosh qjkX

	 kjKjk

8q3jk
X 2ðsinh qjkðX 	 1ÞÞ

	 PrnjkX
2qjk

 
þ kjKjkX

4q4jk

!
cosh qjkðX 	 1Þ;

ðA:17Þ

where

H1 ¼
Prnjk

2qjk sinh qjk
þ kj E1

 
	 E3

qjk
coth qjk

!
þ kjKjk

4q4jk
:

ðA:18Þ

Fig. 16. Instantaneous Nusselt number distributions at the right vertical wall.
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